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Abstract 
The boundary layer flow of incompressible electrically conducting fluid past a stretching plate in the presence of 

transverse magnetic field with heat transfer taking into the account the viscous dissipation effects is considered 

in this present study. The non-linear momentum boundary layer and heat transfer equations are converted into 

non-linear ordinary differential equations using similarity transformations. The resulting boundary value 

problem is solved numerically by an implicit finite difference scheme. The solution is found to be dependent on 

magnetic field parameter M, Source term S, Prandtl number Pr and Eckert number Ec . The results are shown 

graphically to illustrate the effects of these parameters on the fluid velocity and temperature distribution in the 

boundary layer. 
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I. INTRODUCTION 
The study of flow over a stretching sheet has 

generated much interest in recent years due to its 

important contribution especially in many 

engineering processes and industries. The 

applications in industries involved such as the 

aerodynamic extrusion of plastic sheets, glass-fiber 

production, condensation process of metallic plate in 

a cooling bath and glass and also in polymer 

industries. Crane [1] was the first who reported the 

analytical solution for the laminar boundary layer 

flow past a stretching sheet. After this pioneering 

work, the study of fluid flow over a stretching sheet 

has received wide attention among researchers. Gupta 

and Gupta [2] added new dimension to the study with 

suction and injection. 

In recent years, MHD flow problems have 

become more important industrially. Indeed, MHD 

laminar boundary layer behaviour over a stretching 

surface is a significant type of flow having 

considerable practical applications in chemical 

engineering, electrochemistry and polymer 

processing. In his pioneering work, Sakiadis [3] 

developed the flow field due to a flat surface, which 

is moving with a constant velocity in a quiescent 

fluid. 

Further investigations on boundary layer flow 

and heat transfer of viscous fluids over a flat sheet 

are very important for development in many 

manufacturing processes, such as polymer extrusion, 

drawing of copper wires, continuous stretching of 

plastic films and artificial fibers, hot rolling, wire 

drawing, glass-fiber, metal extrusion, and metal 

spinning. Both the kinematics of stretching and the 

simultaneous heating or cooling during such 

processes has a decisive influence on the quality of 

the final products (Magyari & Keller [4]). Among 

these studies, Sakiadis [5] initiated the study of the 

boundary layer flow over a stretched surface moving 

with a constant velocity  and formulated a boundary-

layer equation for two-dimensional and axisymmetric 

flows. 

Bujurke et. al. [6] made an investigation on the 

heat transfer analysis in a second order fluid flow 

past a stretching surface with heat transfer. Datta et. 

al. [7] have studied the distribution of temperature in 

a continuous stretching sheet with uniform wall heat 

flux. Further flow and heat transfer from a linearly 

stretching sheet gained more importance due to 

practical applications in industrial processes. Abel 

and Veena [8] have analyzed visco-elastic fluid flow 

and heat transfer in a porous medium over a 

stretching sheet. 

There are several other researchers who 

investigated various aspects of heat transfer 

characteristics over linearly stretching sheets 

Dandapat and Gupta [9], Rollins and Vajravelu [10], 

Lawrence and Rao [11] and Char [12]. Khan and 

Sanjayanand [13] studied viscoelastic boundary layer 

fluid flow over a quadratically stretched boundary 
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sheet. However, heat transfer analysis was excluded 

from their study. Elbashbeshy [14] examined the 

flow and heat transfer characteristics by considering 

exponentially stretching sheet. Gebhart [15] has 

shown that the viscous dissipation effect plays an 

important role in natural convection in various 

devices processes on large scales(or large planets). 

Also, he pointed out that when the temperature is 

small or when the gravitational field is of high 

intensity, viscous dissipation heat should be taken 

into account. Therefore, the effect of viscous 

dissipation is more predominant in vigorous natural 

convection processes. 

MHD flow and heat transfer of a non-Newtonian 

power-law fluid past a stretching sheet with 

suction/injection and viscous dissipation was studied 

by Kishan and Shashidar [16]
 

.
 
Kishan and kavitha 

[17] studied the MHD heat transfer to non-Newtonian 

power-law fluids over a wedge with heat source/sink 

in the presence of viscous dissipation. Recently Anuj 

kumar and Manoj kumar [18] has studied MHD 

boundary layer flow past a stretching plate with heat 

transfer. The aim of the present study is to investigate 

the MHD and heat transfer effects of a laminar 

electrically conducting fluid as a boundary layer flow 

over a stretching plate with heat source/sink in the 

presence of viscous dissipation. 

 

II. MATHEMATICAL 

FORMULATION 
Let us consider two dimensional laminar 

boundary layer flows over a stretching plate in an 

incompressible electrically conducting fluid, where 

the x-axis is along the stretching plate and y-axis 

perpendicular to it, the applied magnetic field 𝐵0 is 

transversely to x-axis. The magnetic Reynolds 

number of the flow is taken to be small enough so 

that the induced magnetic field can be neglected. 

Under the usual boundary layer approximations, the 

governing equations of continuity, momentum and 

energy under the influence of externally imposed 

transverse magnetic field are: 

 
 

                                                                                                              -------------------------------(1) 

                                                                                      ---------------------------(2) 

 

                                                    --------------------------------(3) 

 

Along with the boundary conditions : 

 

y=0: 𝑢=𝑥,𝜈=0, 𝑇=𝑇𝑝 𝑚>0 y→∞∶ u=0 , T=T∞                                                               --------------------(4) 

 

Here since temperature field varies with regard to y only, so 0
t

x





. Also we introduce the following non-

dimensional quantities. 
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                                                                   -------------------(5)

 

Where 𝑇𝑝 is the plate temperature and 𝑇∞ is the temperature of surrounding. Substituting equation (5) in to (1) 

to (3) , these equations are reduced to 
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                                                                                                         ----------------------(6)

 

                                                                                                     ---------------------(7)

 

Where (non-dimensional magnetic parameter) 

                                                     ------------------------(8) 

 

 

Where bar has been dropped for our convenience 

Along with the boundary conditions: 

 

𝑦 =0;𝑢 =𝑥,𝑣 =0,𝜃 =1 

 

𝑦→ ∞:𝑢= 0 ,𝜃 =0                                                                                          ----------------------(9) 

 

III. Method of Solution 
We shall further transform equations (7) & (8) into a set of partial differential equations amenable to a 

numerical solution. For this purpose we introduce the similarity solution of the form 

 

                                                                                                ---------------------(10) 

 

Also using the continuity equation (6) with equation (10) we have 

 

v = - {f(y) – f (0) }                                                                                       ----------------------(11) 

 

Using (10) and (11) equations (7) and (8) becomes 

 

                                                           ----------------------(12) 

 

                                        ----------------------(13) 

 

Where S=  

 

Along with the boundary conditions : 

 

𝑦=0: 𝑓′=1,𝜃=1 

 

𝑦→∞: 𝑓′=0 ,𝜃=0                                                    ---------------------(14) 

 

Where we take f(0) =0, without any loss of generality. 

 

To solve the system of transformed governing equations (12) and (13) with the boundary conditions (14), first 

equation (12) is linearized using the Quasi linearization technique
19

. Then equation (12) is changed to 

                                     --------------(15) 

Where F is assumed to be a known function and the above equation can be rewritten as 

                                                                    -----------------(16) 

Where 

A0=1 

A1=F 

A2=2F´+Mx 

A3=F´´ 

A4=(F´)
2
- FF´´ 
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Now equation 13 can be expressed in simplified form as 
                                                                                                                                      

--------------------- (17) 

Using implicit finite difference formulae, the equations (16) and (17) are transformed to 

 

B0f(i+2)+B1f(i+1)+B2f(i)+B3f(i-1)=B4                                                                                                                                            ----------------(18) 

D0g(i+1)+D1g(i)+D2g(i-1)+ D3=0                                                                                                 -----------------(19) 

here ‘h’ represents the mesh size in   direction. The system of equations (18) & (19) are solved under the 

boundary conditions (14) by Gauss-Seidel iteration method and computations were carried out by using C 

programming. The numerical solutions of    are considered as (n+1)
th

 order iterative solutions and F are the n
th

 

order iterative solutions. After each cycle of iteration the convergence check is performed, and the process is 

terminated when
410 fF . 

 
Fig1    Velocity profile for different values of M for Ec=0.1,Pr=1 

 

 

M=1, 2, 3, 4;  Ec=0.1; Pr=1  

f´ 

h 
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Fig 2 Temperature profile for different values of M for Ec=0.1,Pr=1 

 

 
Fig 3    Temperature profile for different values of Pr for Ec=0.1,M=1 

M=1, 2, 3, 4;  Ec=0.1;  Pr=1 

⍬ 

h 

Pr= 2, 4, 6, 8; M=1; Ec=0.1 

⍬ 

h 
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Fig 4  Temperature profile for different values of Ec for M=1,Pr=2 

 

 
Fig  5 Temperature profile for different values of S for Ec=0.4,  M=1,Pr=2 

Ec=0, 0.1, 0.2, 0.3, 0.4; M=1; Pr=2 

⍬ 

h 

θ 
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IV. RESULTS AND DISCUSSIONS: 
Velocity profiles presented for various values of 

magnetic parameter M and given Pr are shown in 

fig.1. It is observed from the figure that the velocity 

decreases as magnetic field increases.  It clearly 

indicates that the rate of transport is considerably 

reduced with the increase of M. And we note that the 

Prandtl number Pr has no influence on the velocity of 

fluid flow. 

Temperature distributions presented for various 

values of Magnetic field parameter M, Prandtl 

number Pr and Eckert number Ec are shown in 

figures 2 to 4. The influence of Magnetic parameter 

M on temperature profiles for the fixed values of Pr 

and Ec is presented in fig. 2. It is evident from the 

figure that the temperature increases as the magnetic 

parameter increases. And this increase is very small. 

Figure 3 shows the effect of Prandtl number Pr 

on the temperature profiles when M and Ec are 

constants. It is obvious from the figure that increase 

in the prandtl number decreases the temperature 

profiles which shows that the temperature in the 

boundary layer flow decreases. 

Figure 4 reveals the effect of viscous dissipation 

on the temperature distribution while the M and Pr 

are fixed. It is seen from the figure that the 

temperature in the boundary layer flow increases with 

the increase in the Eckert number Ec. 

Figure 5 reveals the effect of source term on the 

temperature distribution while the M, Ec and Pr are 

fixed. It is seen from the figure that the temperature 

in the boundary layer flow increases with the increase 

in the source term S. 
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